Inhaltsverzeichnis

Inh	altsve	erzeichi	nis	I		
Ab	kürzu	ngen		VII		
Syı	nbolv	erzeich	n is	IX		
1	Einle	eitung				
2	Stan	a aer i	ecnnik	J		
	2.1	Definition und Abgrenzung der thermischen Spritztechnik				
	2.2	Einteilung der thermischen Spritzverfahren				
		2.2.1	Lichtbogenspritzen	6		
		2.2.2	Atmosphärisches Plasmaspritzen	9		
		2.2.3	Hochgeschwindigkeitsflammspritzen	10		
	2.3	Energi	Energieflüsse beim thermischen Spritzen			
	2.4	Thermisch gespritzte Schichtsysteme				
		2.4.1	Der Schichtaufbau	14		
		2.4.2	Haftung zwischen thermisch gespritzter Schicht und Substrat			
	25	Aluminium				
	2.0					
		2.5.1	Aluminiumiegierungen	/۱۱۱۲ 10		
		2.5.2				
	2.6	Metallische Verbundwerkstoffe				
		2.6.1	Aluminium-Stahl-Hybride	20		
	2.7	Beschichten mittels thermischen Spritzens				
		2.7.1	Beschichten von Stahlwerkstoffen			
		2.7.2	Beschichten von Leichtmetallen	23		
		2.7.3	Beschichten von Verbundwerkstoffen	26		
	2.8	Verschleiß				
		281	Verschleißschutz mittels thermischen Spritzens	.29		
	~ ~	T				
	2.9					
		2.9.1	Begrifflichkeiten und Definitionen			
		2.9.2	Einflussgrößen auf die Temperaturwechseibeständigkeit			
		2.9.3	Prüfverfahren der Temperaturwechselbeständigkeit			

		2.9.4	Arten der Temperaturwechselschäden	.34	
	2.10	Eigenspannungen thermisch gespritzter Schichten			
		2.10.1	Eigenspannungen thermisch gespritzter Schichten abgeschieden auf Hybridwerkstoffen	.37	
	2.11	Messu	ng von Eigenspannungen	.38	
		2.11.1 2.11.2	Röntgendiffraktometrie Bohrlochmethode	.38 .39	
	2.12	Auswei	rtung der Eigenspannungsmessung nach der Bohrlochmethode	.40	
		2.12.1 2.12.2 2.12.3	Mittelwertbestimmung Differentialverfahren Integralverfahren	40 41 43	
	2.13	E-Modulbestimmung bei thermischen Spritzschichten			
		2.13.1 2.13.2 2.13.3	Impulse Excitation Technique (IET) 4-Punkt-Biegeversuch Nanoindentierung	45 46 46	
	2.14 2.15	Diagno Finite-8	stik und Temperaturmessungen beim thermischen Spritzen Elemente-Methode	47 49	
		2.15.1 2.15.2 2.15.3 2.15.4 2.15.5 2.15.6	Gegenüberstellung Simulation und Experiment Formen der Simulation Vorteile der Simulation Anwendungsfälle der FEM Grundsätzlicher Aufbau eines FE-Programms Thermische Analyse mittels FEM	49 49 51 52 52 53	
			2.15.6.1 Wärme 2.15.6.2 Temperaturfelder 2.15.6.3 Wärmetransportmechanismen	53 54 54	
_		2.15.7	Einsatz der FEM / FVM-Simulation (CFD) beim thermischen Spritzen	. 57	
3	Ziels	etzung	und Vorgehensweise	59	
	3.1 3.2	lion und zielsetzung 1ensweise	59 60		
4	Expe	eriment	elles und Analytik	63	
	4.1 4.2 4.3	Grundv Prober Thermi	werkstoffe ivorbereitung ische Spritzverfahren	63 64 66	
		4.3.1 4.3.2 4.3.3 4.3.4	Verfahrkinematik Lichtbogenspritzen Atmosphärisches Plasmaspritzen Hochgeschwindigkeitsflammspritzen	67 67 68 70	
			4.3.4.1 Thermico CJS	70	

5

		4.3.4.2	Sulzer WokaJet 400	71		
4.4	Spritzzu	ısätze				
	4.4.1	NiCrBSi		73		
	4.4.2	Cr ₃ C ₂ 251	NiCr	73		
4.5	Versuch	ns- und Ur	ntersuchungsmethoden			
	451	Lichtmikr	oskopie	74		
	452	Rasterele	ektronenmikroskopie	74		
	453	Rauheits	messung	75		
	4.5.4	Härtebes	timmung			
	4.5.5	Haftzugo	rüfung nach DIN EN 582			
	4.5.6	Tribomete	er-Verschleißtest			
	4.5.7	Taber-Ab	praser-Verschleißtest			
	4.5.8	Optische	3D-Profilometrie			
	4.5.9	Thermos	chockuntersuchungen			
	4.5.10	Korrosion	nsuntersuchungen			
	-					
4.6	Inermo	grapnie				
	4. 6 .1	Messauft	bau	85		
	4.6.2	Einflussfa	aktoren bei thermographischen Untersuchungen	91		
	4.6.3	Temperat	turmessung (NiCrNi)	93		
	4.6.4	Analytik u	und Vorgehensweise	96		
4.7	Eigensp	annungsi	messung	104		
4.8	FEM-Si	mulation	-	108		
	4.8.1	Simulatio	onsaufbau und Finflussorößen	108		
	4.8.2	Simulatio	nsschema			
	4.8.3	Veraleich	vischen Simulation und Thermographie			
	4.8.4	Energieb	ilanz Spritzpistole			
		40.44				
		4.8.4.1	I hermische Energie			
		4.8.4.2				
		4.0.4.3	Formichilanz	113 113		
		4.0.4.4	Energiebilanz der Partikel			
	4.8.5	Vermess	ung des Verfahrwegs der Lineareinheit und des Overspray	s 116		
	4.8.6	Wärmesp	bezifische Stoffeigenschaften von Schicht und Substrat			
	4.8.7	Annanme	en für den Energieeintrag an der Substratoberflache			
	4.8.8	Ruckkun	lung			
	4.8.9 Sonstige Randbedingungen					
Dan	stellu ng (und Disk	ussion der Ergebnisse	127		
5.1						
	Schicht	eigenscha	aften	127		
	Schicht 5.1.1	eigenscha Einfluss o	aften der Substratvorbehandlung auf die Oberflächenrauheit	127 127		

		5.1.2.1	Mikrostruktur der thermisch gespritzten Schichten		
		5.1.2.2	Porositätsmessung	132	
		5.1.2.3	Härtemessungen	133	
		5.1.2.4	Rauheitsmessungen		
		5.1.2.5	Fazit der metallographischen Untersuchungen	137	
	5.1.3	Haftzugfe	estigkeit der applizierten Beschichtungen	138	
		5.1.3.1	Fazit Haftzugprüfung	141	
	5.1.4	Verschlei	ißbeständigkeit der Substratwerkstoffe und der Schichten	143	
		5.1.4.1	Gleitverschleißverhalten thermisch gespritzter Schichten	143	
		5.1.4.2	Abrasivverschleißverhalten thermisch gespritzter Schichten		
		5.1.4.3	Fazit Verschleißuntersuchungen		
	5.1.5	Thermos	chockbeständigkeit nach ISO 14188	167	
		5.1.5.1	Fazit Thermoschockuntersuchungen	169	
	5.1.6	Korrosior	nsbeständigkeit nach DIN EN ISO 9227	170	
		5.1.6.1	Fazit Korrosionsuntersuchungen	173	
5.2	Thermi	ische Anal	ytik	176	
	5.2.1	Tempera	turverläufe	176	
		5.2.1.1	Wärmeübergänge im Substrat		
		5.2.1.2	Allgemeiner Temperaturverlauf		
		5.2.1.3	Zeitlicher Verlauf der Temperatur		
		5.2.1.4	Temperaturverlauf über die Breite der Proben		
		5.2.1.5	Temperaturverlauf über die Höhe der Proben		
		5.2.1.6	Temperaturveriauf über die Länge der Proben		
	5.2.2	Eigensch	aften der Partikel im Flug	186	
	5.2.3	Tempera	turverteilung während der Beschichtungsversuche	190	
		5.2.3.1	Sulzer SmartArc (LiBo)		
		5.2.3.2	Sulzer F4-MB (APS)		
		5.2.3.3	Thermico CJS (HVOF)		
		5.2.3.4	Sulzer WokaJet 400 (HVOF)	200	
	5.2.4	Eigenspa	annungsverläufe	203	
		5.2.4.1	Allgemeiner Eigenspannungsverlauf	203	
	5.2.5	Fazit der	thermischen Analytik	207	
5.3	FEM-Simulation				
	5.3.1	Wärmeei	intrag des Spritzstrahls auf das Substrat		
	5.3.2	Abbildun	g des Energieflusses von der Spritzpistole zum Substrat	217	
		5.3.2.1	APS: Brenner F4-MB der Fa. Sulzer	220	
		5.3.2.2	LiBo: Spritzpistole SmartArc der Fa. Sulzer	221	
		5.3.2.3	HVOF: Brenner CJS der Fa. Thermico	222	
		5.3.2.4	HVOF: Brenner WokaJet 400 der Fa. Sulzer	223	

		5.3.3	Temperaturverteilungen im Substrat		224
			5.3.3.1	Allgemeine Temperaturverteilung	224
			5.3.3.2	Temperaturverteilung APS mit Cr3C2 25NiCr	229
			5.3.3.3	Temperaturverteilung APS mit NiCrBSi	231
			5.3.3.4	Temperaturverteilung LiBo mit Cr ₃ C ₂ 25NiCr	232
			5.3.3.5	Temperaturverteilung LiBo mit NiCrBSi	233
			5.3.3.6	Temperaturverteilung HVOF (Thermico) mit Cr ₃ C ₂ 25NiCr	234
			5.3.3.7	Temperaturverteilung HVOF (Thermico) mit NiCrBSi	235
			5.3.3.8	Temperaturverteilung HVOF (Woka) mit Cr ₃ C ₂ 25NiCr	236
			5.3.3.9	Temperaturverteilung HVOF (Woka) mit NiCrBSi	237
		5.3.4	Fazit FE	M-Simulation	238
6	Zusa	mmenf	assung u	nd Ausblick	243
	6.1	I Zusammenfassung		243	
	6.2	2 Ausblick			247
Lite	Literatur				
An	Anhang				